选自arXiv作者:LeiZhang、ShuaiWang、BingLiu机器之心编译近年来,深度学习有了突破性发展,NLP领域里的情感分析任务逐渐引入了这种方法,并形成了很多业内最佳结果。本文中,来自领英与伊利诺伊大学芝加哥分校的研究人员对基于深度学习的情感分析研究进行了详细论述。情感分析或观点挖掘是对人们对产品、服务、组织、个人、问题、事件、话题及其属性的观点、情感、情绪、评价和态度的计算研究。该领域的开始和快速发展与社交媒体的发展相一致,如评论、论坛、博客、微博、推特和社交网络,因为这是人类历史上第一次拥有如此海量的以数字形式记录的观点数据。早在年,情感分析就成为NLP中最活跃的研究领域之一。它在数据挖掘、Web挖掘、文本挖掘和信息检索方面得到了广泛的研究。实际上,因其对商业和社会的整体重要性,它已经从计算机科学扩展到管理学和社会学,如营销、金融、政治学、传播学、健康科学,甚至历史学。这种发展原因在于观点是几乎所有人类活动的核心,是人类行为的重要影响因素。我们的信念、对现实的感知,以及我们所做的决策在很大程度上依赖于别人看到和评价世界的方式。因此,我们在做决策的时候,通常会寻求别人的意见。不只是个人,组织也是如此。现有研究已经产生了可用于情感分析多项任务的大量技术,包括监督和无监督方法。在监督方法中,早期论文使用所有监督机器学习方法(如支持向量机、最大熵、朴素贝叶斯等)和特征组合。无监督方法包括使用情感词典、语法分析和句法模式的不同方法。现有多本综述书籍和论文,广泛地涵盖了早期的方法和应用。大约十年前,深度学习成为强大的机器学习技术,在很多应用领域产生了当前最优的结果,包括计算机视觉、语音识别、NLP等。近期将深度学习应用到情感分析也逐渐变得流行。本文首先概述深度学习,然后对基于深度学习的情感分析进行综述。论文:DeepLearningforSentimentAnalysis:ASurvey论文链接:
转载请注明:
http://www.aideyishus.com/lktp/5906.html