北京中科白癜风医院诈骗曝光 http://www.csjkc.com/yydt/m/515.html选自Medium作者:JamesLe机器之心编译参与:白悦、黄小天本文简述了机器学习核心结构的历史发展,并总结了研究者需要熟知的8个神经网络架构。我们为什么需要「机器学习」?机器学习对于那些我们直接编程太过复杂的任务来说是必需的。有些任务很复杂,以至于人类不可能解决任务中所有的细节并精确地编程。所以,我们向机器学习算法提供大量的数据,让算法通过探索数据并找到一个可以实现程序员目的的模型来解决这个问题。我们来看两个例子:写一个程序去识别复杂场景中照明条件下新视角的三维物体是很困难的。我们不知道编写什么程序,因为我们并不了解它在我们大脑中运作的机制,即便知道如何实现,写出来的程序也可能会非常复杂。写一个程序去计算信用卡诈骗的概率是很困难的。因为可能没有任何既简单又可靠的规则,我们需要结合大量的弱规则去判别。欺骗是可以转移目标的,程序需要不断更改。接着出现了机器学习方法:我们不需为每个特定的任务手动编程,只要收集大量的样本,为给定的输入指定正确的输出。机器学习算法利用这些样本去生成完成指定工作的程序。学习算法产生的程序可能与典型的手写程序非常不同,它可能包含数百万个数字。如果我们做得正确,这个程序将像处理训练集上的样本一样来处理新样本。如果数据改变,程序也可以通过训练新数据改变。你应该注意到,目前大量的计算比支付给程序员编写一个特定任务的程序便宜。鉴于此,机器学习最适用任务的例子包括:模式识别:真实场景中的物体,面部识别或面部表情,口语。异常识别:不寻常的信用卡交易序列,核电站传感器读数的异常模式。预测:未来股票价格或货币汇率,一个人喜欢什么电影。什么是神经网络?神经网络是机器学习文献中的一类模型。例如,如果你参加了Coursera的机器学习课程,很可能会学到神经网络。神经网络是一套特定的算法,它彻底改变了机器学习领域。他们受到生物神经网络的启发,目前深度神经网络已经被证实效果很好。神经网络本身是一般的函数逼近,这就是为什么它们几乎可以应用于任何从输入到输出空间复杂映射的机器学习问题。以下是说服你学习神经计算的三个理由:了解大脑是如何工作的:它非常大且很复杂,一旦破坏就会脑死亡,所以我们需要使用计算机模拟。了解受神经元及其适应性连接启发的并行计算风格:这种风格与序列计算截然不同。使用受大脑启发的新颖学习算法来解决实际问题:即使不是大脑的实际工作方式,学习算法也非常有用。在完成吴恩达的Coursera机器学习课程后,我开始对神经网络和深度学习产生兴趣,因此寻找最好的网上资源来了解这个主题,并找到了GeoffreyHinton的机器学习神经网络课程。如果你正在做深度学习的工程或想要踏入深度学习/机器学习的领域,你应该参加这个课程。GeoffreyHinton毫无疑问是深度学习领域的教父,在课程中给出了非凡的见解。在这篇博客文章中,我想分享我认为任何机器学习研究人员都应该熟悉的八个神经网络架构,以促进他们的工作。一般来说,这些架构可分为三类:1.前馈神经网络这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为「深度」神经网络。他们计算出一系列改变样本相似性的变换。各层神经元的活动是前一层活动的非线性函数。2.循环网络循环网络在他们的连接图中定向了循环,这意味着你可以按照箭头回到你开始的地方。他们可以有复杂的动态,使其很难训练。他们更具有生物真实性。目前如何高效地训练循环网络正在受到广泛
转载请注明:
http://www.aideyishus.com/lktp/6715.html