机器人的个性是通过算法而赋予,随着AI的进步有一天机器人也许能够互相聊天、相互交流“工作”经验,写新闻甚至写小说。“本质上,人工智能(AI)这一术语指的是,能够通过行为模仿被认定为具有智能的计算机系统。在形式上,AI可以被理解为一种数学函数。来自真实世界的情境、观察、问题与任务属于输入内容,而将其「映射」至适当的响应、决策与行动流程之后即可得到输出结果。第一代AI系统主要将这些功能编码为手动建立的规则列表。举例来说,其中某些方案能够解释自然语言,这类系统利用正式编码方式处理语言中的一切语义与句法规律,外加各种不规则性因素。然而这样的系统很快就遇到了问题,因为日常语言的使用特点在于,不规则性要远高于任何预期,而当前的AI系统仅仅能够自动从精心挑选的文本样本中学习到这些特征。为了改善这一问题,AI系统首先选择基础性功能架构,例如决策树或者神经网络,并借此逐步自动适应训练数据所提供的特征。这种方法使得当前的AI系统能够将报纸、书籍、讨论文本或者议会辩论纪要中的语言示例作为模型训练素材,而这也使其真正有可能掌握真实语言的表达结构。成功实现自动(或者机器)学习的关键之一,在于强化学习方法的应用。具体来讲,这种方法会提供适当的反馈以调整系统行为,从而响应任务学习期间的成功或失败尝试。在这种情况下,编程要素主要负责以数学术语来衡量成功或失败的量化标准——例如,分别为期望的结果与不正确的推论定义合适且有效的奖励与惩罚,以这种反馈机制为基础,学习系统将能够有效改变自身后续行为。从此意义出发,如今的AI系统已经非常类似于人类以及其它生物的学习过程——能够将反复试验得出的实际结果,一步步改进自身行为并摸索出解决问题的最佳办法。”我们可以在两者之间设定一种根本性的区别。人类的智能体现在我们的文化当中,我们的思想与观念是在我们的历史背景下逐步发展起来的,成为社会生活方式中不可或缺的组成部分。只有以实体方式成长在这种文化当中,我们才能真正理解。与之相对,尽管我们已经能够开发出以类似于人类行为的方式模拟出某种文化倾向的机器人,但机器人仍远远无法与人类的智能相媲美。人类能够轻松分辨红色,能举一反三,将红色与其它一些相似的颜色联系起来,也可以判断出周遭世界的红色物体,轻松区分其中细微的色差区别。这实际上代表着一整套与知识相关的智能机制。另外,能够感知并回应细微差别与幽默元素,也是人类智能的另一大组成部分。只有具备能够记录感官印象的身体,我们才能够真正理解智能所包含的大部分意义。我们通常将其称为「体验认知」。一个人必须能够感受到痛苦,才能理解它的含义。如果不能理解这种感受,那么就必然无法与能够理解感受的生灵产生共鸣。机器人与人类之间存在着如此巨大的鸿沟,以至于AI永远无法获得与人类智能相当的东西。虽然机器人很可能在多个方面超越人类,但就我们人类能力的广度与灵活性,甚至是智能对于我们的根本意义而言,AI甚至永远无法接近我们的水平。人工智能可以从数据集当中整理出「最佳估算」结论。例如,根据可用的统计数据,信用卡公司能够计算出刚刚办理的卡片遭到办卡人滥用的概率。而根据数据,风险能够按照相对比例进行量化,并视情况决定拒绝支付或者允许支付。这种评估已经成为多种商业模式的重要基础。对人工智能技术的应用能够大大降低此类估算的成本,因为其能够以极快的速度分析与以往类似情况相关的大量数据。目前,AI尚不能实现的是独立评估行动的后果。我们需要考虑有哪些响应方法可供选择,以及如何在评估当中建立合适的安全界线以避免令人讨厌的意外。在未来,这些仍然需要由人类做出判断,而机器只能执行人们分配的某些特定任务。“目前,人工智能领域仍然主要处于搜索模式,基本上可以这么断言。机器人技术的设计目标在于提供能够模仿人类能力的方案,以人脸识别为代表的实际成果已经体现出这种明显的趋势。然而,这类应用不太可能决定AI领域的未来发展方向。换言之,试图将利用非生命事物作为自我预测的动机是种不明智的行为。我们永远不会制造出真正的合作伙伴或者谈话对象。相反,我们应该集中精力于经济生产这一核心。如果实现工业4.0的努力主要集中在对工具以及技术能力的推动方面,那么数字化无疑有望为全世界的经济发展做出巨大贡献。(部分内容来源于网络如有侵权请联系删除)
转载请注明:
http://www.aideyishus.com/lkjg/8157.html