编码机

一图尽展视频游戏AI技术,DQN无愧众算

发布时间:2022/12/11 20:38:42   

选自arXiv

作者:NielsJustesen、PhilipBontrager等

机器之心编译

参与:GeekAI、贾伟

游戏中的人工智能技术纷繁杂乱,近期来自来自哥本哈根大学和纽约大学的几位研究人员发表的一篇论文对相关技术做了详尽的综述,并用一张图描述出了游戏AI技术的历史沿革,DQN以其巨大影响成为众算法之鼻祖。

如今,将人工智能技术应用到游戏中已经是一个成熟的研究领域,有许多会议和专门的期刊对此进行讨论。来自哥本哈根大学和纽约大学的几位研究人员近期发布的一篇综述文章中,梳理并回顾了视频游戏深度学习领域的最新进展,详细介绍了各种游戏研究平台及相关深度学习方法的演化历史,同时讨论了重要的开放性挑战。据作者介绍,其撰写该论文旨在从不同类型游戏的视角来回顾这个研究领域,指出它们对深度学习的挑战,以及如何利用深度学习来玩这些游戏。

我们感兴趣的是,在不存在前向模型的情况下,使用像素数据或特征向量,玩好一款特定的视频游戏(不同于围棋等棋盘游戏)的方法。

值得注意的是,尽管这篇文章收集并讨论了大量的游戏AI,但还是有很多在本文中没有涉及到——游戏AI是一个广阔而多样的领域。这篇论文的重点在于深度学习方法如何更好地玩视频游戏,而关于如何以靠谱的、有趣的或与人类似的方式玩游戏的研究也有很多。人工智能技术也被用于对玩家的行为、经验或偏好建模,或被用于生成游戏内容(如游戏难度、贴图或规则)。深度学习并不是游戏中唯一使用的人工智能方法。其它比较著名的方法,例如还包括蒙特卡罗树搜索和演化计算。在接下来的内容中,读者需要记住,这篇综述论文涉及的范围还是很有限的。

本文将简单介绍这篇论文的核心内容,并着重介绍关于游戏AI中深度学习技术历史演化的部分。

论文标题:DeepLearningforVideoGamePlaying

链接:

转载请注明:http://www.aideyishus.com/lkjg/2576.html

------分隔线----------------------------